Lattice Calculations of Nucleon Form Factors

Sergey N. Syritsyn, for the Lattice Hadron Physics Collaboration

Massachusetts Institute of Technology LNS/CTP

MENU 2010 College of William and Mary, Williamsburg, Virginia, May 31, 2010

< □ > < (四 >) < (回 >) < (回 >) < (回 >)) 三 回

LHP Collaboration (this work)

• MIT/LNS:

Jonathan Bratt Meifeng Lin Harvey Meyer John Negele Andrew Pochinsky Massimiliano Procura Sergey Syritsyn

- New Mexico State Univ.: Michael Engelhardt
- TU München: Phil Hägler
- Universität Regensburg Thomas Hemmert
- Institute of Physics, Taiwan: Wolfram Schroers

[arXiv:0907.4194 [hep-lat] (Phys. Rev. D81:034507, 2010)]
[arXiv:1001.3620 [hep-lat]]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Axial Form Factors

1 Lattice simulations with chiral quarks

Nucleon Form Factors

• Vector form factors: Dirac F_1 and Pauli F_2

$$\langle N(p+q)|\bar{q}\gamma^{\mu}q|N(p)\rangle = \bar{u}_{p+q} \big[\gamma^{\mu} F_{1} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_{2}\big]u_{p}$$

electron scattering off protons&nuclei

• Axial form factors

$$\langle N(p+q)|\bar{q}\gamma^{\mu}\gamma_{5}q|N(p)\rangle = \bar{u}_{p+q} \left[\gamma^{\mu}\gamma_{5}G_{A} + \frac{q^{\mu}}{2M}\gamma_{5}G_{P}\right]u_{p}$$

 ν scattering off protons&nuclei, charged pion electroproduction, muon capture

Focus on systematically clean isovector (u - d) form factors

Nucleon Structure on a Lattice

Nucleon Structure in Lattice QCD:

- 2+1 flavors, $m_u = m_d = \hat{m} \ll m_s$
- spacelike $0 \le Q^2 \lesssim 1 \ {\rm GeV}^2$
- $a = 0.084 \dots 0.124 \text{ fm}$

•
$$L > m_{\pi}^{-1}$$

Current and past simulations:

- 300 MeV $\lesssim m_{\pi} \lesssim 600$ MeV with chiral valence quarks
- 300 MeV $\lesssim m_{\pi} \lesssim 400$ MeV with chiral valence & sea quarks
- (Preliminary) down to $m_{\pi} = 200$ MeV with non-chiral (Wilson-Clover) quarks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の�?

Vector Form Factors

Electric Form Factor G_E^{u-d} vs. Q^2

$$G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2} F_2(Q^2) \sim \langle N(+\frac{\vec{q}}{2}) | Q | N(-\frac{\vec{q}}{2}) \rangle$$

Fit to experimental data: [J. J. Kelly '04]

S. N. Syritsyn (MIT/LNS)

Lattice Calculations of Nucleon Form Factor

Dipole Fits to G_E^{u-d} ($m_{\pi} = 297$ MeV)

- Dipole fits $G_E(Q^2) = \frac{1}{(1+Q^2/M_D^2)^2}$
- Cut-off $Q^2 \leq 0.5~{\rm GeV}^2$
- Results are consistent for higher cutoffs

$$\begin{split} M_D^2 &= 0.97 \dots 1.07 \,\, \mathrm{GeV}^2 \\ \left(M_D^2 \right)_{\mathrm{exp}} &= 0.71 \,\, \mathrm{GeV}^2 \end{split}$$

Dipole Fits to G_M^{u-d} ($m_{\pi} = 297$ MeV)

- Dipole fits $G_M(Q^2) = \frac{1+\kappa_v}{(1+Q^2/M_D^2)^2}$
- Cut-off $Q^2 \leq 0.5~{\rm GeV}^2$
- Results are consistent for higher cutoffs

$$\begin{split} M_D^2 &= 0.97 \dots 1.07 \,\, \mathrm{GeV^2} \\ \left(M_D^2 \right)_{\mathrm{exp}} &= 0.71 \,\, \mathrm{GeV^2} \end{split}$$

Dirac Radius $\langle r_1^2 \rangle^{u-d}$

Dirac and Pauli Radii vs. ChPT

Div. "pion cloud" contribution:

$$\delta \begin{bmatrix} (r_1^v)^2 \\ \kappa_v (r_2^v)^2 \end{bmatrix} \sim \log m_{\pi}$$
$$\sim \frac{1}{m_{\pi}}$$

HBChPT [V. Bernard, H. Fearing, T. Hemmert, U.-G. Meissner (1998)] CBChPT [T. Gail, PhD Thesis (2007)]

Anomalous Magnetic Moment κ_v

HBChPT [V. Bernard, H. Fearing, T. Hemmert, U.-G. Meissner (1998); T. Hemmert, W. Weise (2002)] CBChPT [T. Gail, PhD Thesis (2007)]

S. N. Syritsyn (MIT/LNS)

Lattice Calculations of Nucleon Form Factor

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Lattice simulations with chiral quarks

2 Vector Form Factors

Q^2 -dependence of Axial Form Factor G_A^{u-d}

 $\begin{array}{l} \mbox{Phenomenology:} \ G_A(Q^2) = \frac{g_A}{(1+Q^2/M_A^2)^2} \\ M_A = (1.026 \pm 0.021) \ \mbox{GeV} \ (\nu \ \mbox{scattering, [PDG 2000]}) \end{array}$

Axial radius

Axial Form Factors

```
Axial Charge g_A = G_A^{u-d}(0)
```


SSE fit [T. Hemmert, M. Procura, W. Weise (2003)] $m_{\pi} \lesssim 500 \text{ MeV}$ with 3 parameters: g_A^0 , g_1 , counterterm [fit by P. Hägler]

S. N. Syritsyn (MIT/LNS)

Axial Form Factors

```
Axial Charge g_A = G_A^{u-d}(0)
```


SSE fit [T. Hemmert, M. Procura, W. Weise (2003)] $m_{\pi} \lesssim 360$ MeV with 2 parameters: g_A^0 , counterterm [fit by P. Hägler]

S. N. Syritsyn (MIT/LNS)

Q^2 -dependence of Pseudoscalar G_P^{u-d}

Check Pion-pole Dominance

Axial Form Factors

Check Pion-pole Dominance (2)

S. N. Syritsyn (MIT/LNS)

Lattice Calculations of Nucleon Form Factor

Lattice simulations with chiral quarks

2 Vector Form Factors

Outlook

- Accurate lattice data with chiral~quarks exists for $m_\pi^2\gtrsim 300~{\rm MeV}$
- Form factors reproduce qualitatively the expected empirical/phenomenological behavior
 - dipole form for G_E , G_M , G_A
 - pion pole form for G_P
- "Nucleon size" observables $(r_1^2)^v$, $(r_2^2)^v$, $(r_A^2)^v$ undershoot experimental values and weakly depend on m_π
- Calculations at smaller m_π and Q^2 are necessary
 - $m_{\pi} = 180$ and 250 MeV are underway
 - small Q^2 : larger volumes OR twisted BC

2 Vector Form Factors

Proton Form Factors

Different results from

- Rosenbluth separation
- Polarization transfer

due to 2γ exchange

[Blunden, Melnitchouk and Tjon, 2003] [Chen et al, 2004]

Proton Form Factors

S. N. Syritsyn (MIT/LNS)

Lattice Calculations of Nucleon Form Factor

Appendix

Neutron Electric Form Factor

$$\langle r_{En}^2 \rangle < 0$$
:
(+) core
(-) surface

[H. Gao, Int.J.Mod.Phys.E12:1 (2003)]

- deuterium targets
- thermal neutron scattering: $\langle r_{E,n}^2 \rangle = -0.113(3)(4) \text{ fm}^2$ [PRL 74, 2427 (1995)]

S. N. Syritsyn (MIT/LNS)

Appendix

Neutron Electric Form Factor

S. N. Syritsyn (MIT/LNS)

Lattice Calculations of Nucleon Form Factor

Appendix

```
Axial Charge g_A = G_A^{u-d}(0)
```

